[1] 宋冰, 马玉鑫, 方永锋, 等. 基于LSNPE算法的化工过程故障检测[J]. 化工学报, 2014, 65(2): 620-627.Song Bing, Ma Yuxin, Fang Yongfeng, et al.Fault detection for chemical process based on LSNPE method[J]. Journal of Chemical Industry and Engineering (China), 2014, 65(2): 620-627. [2] 王健, 冯健, 韩志艳. 基于流形学习的局部保持PCA 算法在故障检测中的应用[J]. 控制与决策, 2013, 28(5): 683-687.Wang Jian, Feng Jian, Han Zhiyan.Locally preserving PCA method based on manifold learning and its application in fault detection[J]. Control and Decision, 2013, 28(5): 683-687. [3] 张沐光, 宋执环. 一种基于独立元贡献度的子空间故障检测方法[J]. 控制理论与应用, 2010, 27(3): 296-302.Zhang Muguang, Song Zhihuan.Subspace fault detection method based on independent component contribution[J]. Control Theory & Applications, 2010, 27(3): 296-302. [4] Miao Aimin, Ge Zhiqiang, Song Zhihuan, et al.Time Neighborhood preserving embedding model and Its application for fault detection[J]. Industrial and Engineering Chemistry Research(S0888-5885), 2013, 52(38): 13717-13729. [5] 陈新忠, 胡汇涓, 王雪松. 基于加权近邻保持嵌入的高光谱数据降维方法[J]. 中国矿业大学学报, 2013, 42(6): 1066-1072.Chen Xinzhong, Hu Huijuan, Wang Xuesong.Dimensionality reduction for hyperspectral data using weighted neighborhood preserving embedding[J]. Journal of China University of Mining & Technology, 2013, 42(6): 1066-1072. [6] Kenneth S McClure, R Bhushan Gopaluni, Terrance Chmelyk, et al. Nonlinear process monitoring using supervised locally linear embedding projection[J]. Industrial and Engineering Chemistry Research (S0888-5885), 2013, 53(13): 5205-5216. [7] Gui Jie, Sun Zhenan.Discriminant sparse neighborhood preserving embedding for face recognition[J]. Pattern Recognition (S0031-3203), 2012, 45(2): 2884-2893. [8] 张少捷, 王振雷, 钱峰. 基于LTSA的FS-SVDD方法及其在化工过程监控中的应用[J]. 化工学报, 2010, 61(8): 1894-1900.Zhang Shaojie, Wang Zhenlei, Qian Feng.FS-SVDD based on LTSA and its application to chemical process monitoring[J]. Journal of Chemical Industry and Engineering, 2010, 61(8): 1894-1900. [9] Olga Kouropteva, Oleg Okun, Matti Pietikainen.Incremental Locally Linear Embedding[J]. Pattern Recognition (S0031-3203), 2005, 38(10): 1764-1767. [10] 祝志博, 王培良, 宋执环. 基于PCA-SVDD 的故障检测和自学习辨识[J]. 浙江大学学报, 2010, 44(4): 652-658.Zhu Zhibo, Wang Peiliang, Song Zhihuan.PCA-SVDD based fault detection and self-learning identification[J], Journal of ZheJiang University, 2010, 44(4): 652-658. [11] Dong Jie, Zhang Kai, Huang Ya, et al.Adaptive total PLS based quality-relevant process monitoring with application to the Tennessee Eastman process[J]. Neurocomputing(S0925-2312), 2015, 154(22): 77-85. [12] 张沐光, 宋执环. 一种基于DLPP的动态过程故障检测方法[J]. 华中科技大学学报, 2009, 37(1): 62-65.Zhang Muguang, Song Zhihuan.A fault detection method based on DLPP for dynamic processes[J]. Journal Huazhong University of Science and Technology (Natural Science Edition), 2009, 37(1): 62-65. [13] Jiang Qingchao, Yan Xuefeng.Probabilistic Weighted NPE-SVDD for chemical process monitoring[J]. Control Engineering Practice (S0967-0661), 2014, 28(5): 74-89. [14] Miao Aimin, Ge Zhiqiang, Song Zhihuan, et al.Nonlocal structure constrained neighborhood preserving embedding model and Its Application for Fault Detection[J]. Chemometrics and Intelligent Laboratory Systems(S0169-7439), 2015, 142: 184-196. [15] Ji-Hoon Cho, Jong-Min Lee, Sang Wook Choi, et al.Fault identification for process monitoring using kernel principal component analysis[J]. Chemical Engineering Science (S0009-2509), 2005, 60(1): 279-288. [16] Molina G D, Zumoffen D A R, Basuldo M S. Plant-wide control strategy applied to the Tennessee Eastman process at two operating points[J] Computers and Chemical Engineering(S0098-1354), 2011, 35(10): 2081-2097. |