系统仿真学报 ›› 2017, Vol. 29 ›› Issue (1): 226-233.doi: 10.16182/j.issn1004731x.joss.201701030

• 仿真应用工程 • 上一篇    

基于信息熵的BP网络在热工系统建模中的应用

孙海蓉1, 王蕊1,2, 耿军亚1,2   

  1. 1.华北电力大学控制与计算机工程学院,保定 071003;
    2.华北电力大学河北省发电过程仿真与优化控制工程技术研究中心,保定 071003
  • 收稿日期:2016-04-13 修回日期:2016-06-02 出版日期:2017-01-08 发布日期:2020-06-01
  • 作者简介:孙海蓉(1972-),女,北京,博士,副教授,研究方向为智能控制;王蕊(1987-),女,河北保定,硕士生,研究方向为数据挖掘。
  • 基金资助:
    中央高校基本科研业务费专项资金(2016MS143)

Thermal System Modeling Based on Entropy and BP Neural Network

Sun Hairong1, Wang Rui1,2, Geng Junya1,2   

  1. 1. School of Control and Computer Engineering, North China Electric Power University, Baoding 071003, China;
    2. Hebei Engineering Research Center of Simulation & Optimized Control for Power Generation, North China Electric Power University, Baoding 071003, China
  • Received:2016-04-13 Revised:2016-06-02 Online:2017-01-08 Published:2020-06-01

摘要: 针对火电厂热工对象实时建模困难、模型精度不高、以及神经网络因输入量增多导致收敛速度大幅降低的问题,将近似决策熵属性约简用于BP(Back Propagation)网络的建模中,提出了一种基于信息熵的BP网络建模方法。该方法采用k-means聚类算法对现场数据进行预处理及有效性评价,用近似决策熵对系统输入进行属性约简,用BP网络训练建立非线性模型。通过将该方法应用于主汽温和NOx排放浓度建模表明,该方法模型精度高,而且有效降低了BP网络输入层的维数,简化了网络结构,提高了训练速度,对热工系统实时建模具有重要实用价值。

关键词: 粗糙集, 属性约简, 近似决策熵, 神经网络, 非线性建模

Abstract: The real-time modeling is difficult on thermal system and the model precision is not high. The convergence rate of Neural Network (NN) decreases dramatically when there are too many inputs. The BP NN modeling method based on information entropy was proposed in which the attribute reduction based on the model of approximation decision entropy was used. Field data were preprocessed by the k-means clustering algorithm and the validity was then evaluated. The approximation decision entropy was used in attribute reduction of the inputs. And the nonlinear model was built by the training of BP NN. Eventually, the proposed method was applied to the modeling of main steam temperature and the modeling of NOx emission concentration and the result shows that, the method simplified the structure of network and increased the training speed with high-precision of the model. The method is of great significance on real-time modeling and has higher practical value.

Key words: rough set, attribute reduction, approximation decision entropy, NN, nonlinear modeling

中图分类号: