系统仿真学报 ›› 2016, Vol. 28 ›› Issue (10): 2362-2368.

• 仿真建模理论与方法 • 上一篇    下一篇

基于用户生成标签的多视角特征学习方法

田枫1, 尚福华1, 刘卓炫1, 沈旭昆2   

  1. 1.东北石油大学计算机与信息技术学院,大庆 163318;
    2.北京航空航天大学虚拟现实技术与系统国家重点实验室,北京 100191
  • 收稿日期:2016-04-28 修回日期:2016-07-14 出版日期:2016-10-08 发布日期:2020-08-13
  • 作者简介:田枫(1980-),男,黑龙江,博士,副教授,研究方向为多媒体理解;尚福华(通讯作者1962-),男,黑龙江,博士,教授,研究方向为机器学习。
  • 基金资助:
    国家自然科学基金(61502094,61402099); 黑龙江省自然科学基金(F2016002,F2015020); 黑龙江省教育科学规划重点课题(GJB1215019)

Multi-View Feature Learning Based on User Contributed Tag

Tian Feng1, Shang Fuhua1, Liu Zhuoxuan1, Shen Xukun2   

  1. 1. School of Computer and Information Technology, Northeast Petroleum University, Daqing 163318, China;
    2. The State Key Laboratory of Virtual Reality Technology and Systems, Beihang University, Beijing 100191, China
  • Received:2016-04-28 Revised:2016-07-14 Online:2016-10-08 Published:2020-08-13

摘要: 提出了一种基于用户生成标签的多视角特征学习方法。采用词袋模型分别得到媒体的内容特征表示和标签特征表示;通过媒体词汇和文本词汇的相关性建模,学习文本特征空间和内容特征空间的映射模型。在此基础上,给出了优化前后的特征表示具备近似等距映射保持的理论依据。该方法相对数据集规模具备线性时间复杂度,适用于大规模数据集,具备多视角特征融合能力。基准数据集上测试表明,优化后的特征表示较特征拼接和相关成分分析等方法鉴别力更强。

关键词: 多视角特征, 多视角学习, 用户生成标签, 特征学习

Abstract: A multi-view feature learning method based on user contributed tag was proposed. Bag-of-words representation for content feature and textual feature was learned. A multi-view feature learning framework was proposed to explicitly model the relevance between multimedia object and tags by learning a linear mapping from textual representation to visual representation. The learned feature encoded the information conveyed by original feature, and inner products of leaned features were preserved with a high probability with visual features and textual features. The complexity of the method is linear with respect to the size of dataset. Furthermore, the method can be extended to deal with more than two views. The performance of the proposed method indicts it’s superiority over other representative method.

Key words: multi-view feature, multi-view learning, user contributed tag, feature learning

中图分类号: