系统仿真学报 ›› 2024, Vol. 36 ›› Issue (11): 2722-2740.doi: 10.16182/j.issn1004731x.joss.24-0089

• 研究论文 • 上一篇    

面向航空结构件的双资源分布式柔性调度研究

王玉芳1,2,3, 章殿清1, 华晓麟1, 姚彬彬1, 陈凡1   

  1. 1.南京信息工程大学 自动化学院,江苏 南京 210044
    2.南京信息工程大学 大气环境与装备技术协同创新中心,江苏 南京 210044
    3.南京信息工程大学 气象能源利用与控制工程技术研究中心,江苏 南京 210044
  • 收稿日期:2024-01-22 修回日期:2024-04-09 出版日期:2024-11-13 发布日期:2024-11-19
  • 通讯作者: 章殿清
  • 第一作者简介:王玉芳(1978-),女,副教授,博士,研究方向为生产调度与优化。
  • 基金资助:
    国家自然科学基金(51705260)

Dual-Resource Constrained Distributed Flexible Scheduling for Aerospace Structural Components

Wang Yufang1,2,3, Zhang Dianqing1, Hua Xiaolin1, Yao Binbin1, Chen Fan1   

  1. 1.School of Automation, Nanjing University of Information Science & Technology, Nanjing 210044, China
    2.Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Nanjing University of Information Science & Technology, Nanjing 210044, China
    3.Jiangsu Engineering Research Center on Meteorological Energy Using and Control, Nanjing 210044, China
  • Received:2024-01-22 Revised:2024-04-09 Online:2024-11-13 Published:2024-11-19
  • Contact: Zhang Dianqing

摘要:

考虑航空结构件生产中精工序的员工约束和分布式多工厂协作需求,建立双资源约束分布式柔性作业车间调度模型。提出一种基于关键工厂的混合灰狼优化算法来解决该问题。针对模型的工厂选择、工序排序、机器选择以及员工选择4个子问题,设计了4层编码及新型解码方式以避免机器员工的使用冲突。结合模型的工厂约束和员工约束特征,设计一种新的狼群捕猎和猎物搜索机制,保证种群多样性的同时提高算法全局探索能力。针对分布式特性,设计基于关键工厂的局部搜索策略,提高算法的局部搜索能力。通过扩展标准算例和航空结构件实例分析,验证了所提算法求解双资源约束分布式柔性调度的有效性。

关键词: 航空结构件, 分布式柔性作业车间调度, 双资源约束, 关键工厂, 灰狼优化算法

Abstract:

A dual-resource constrained distributed flexible job-shop scheduling model was established by taking into account the worker constraints of the finishing process and the requirements of distributed multi-factory collaboration in the production of aerospace structural components. A hybrid grey wolf optimization algorithm based on the critical factory was proposed to solve this problem. The model contained four subproblems: factory selection, operation sequencing, machine selection, and worker selection. In view of these four sub-problems, a four-layer coding and a new decoding method were designed to avoid the use conflict of machines and workers. In addition, a new mechanism for hunting and searching for prey by wolf packs was developed to ensure population diversity and improve the global search ability of the algorithm while taking into account the constraints of factories and workers. A local search strategy based on critical factories was developed to enhance the local search capability of the algorithm in the context of distributed characteristics. The effectiveness of the algorithm in solving dual-resource constrained distributed flexible scheduling was verified by using extended standard examples and aerospace structural component examples.

Key words: aerospace structural components, distributed flexible job-shop scheduling, dual-resource constraint, critical factories, grey wolf optimization algorithm

中图分类号: