系统仿真学报 ›› 2024, Vol. 36 ›› Issue (11): 2722-2740.doi: 10.16182/j.issn1004731x.joss.24-0089
• 研究论文 • 上一篇
王玉芳1,2,3, 章殿清1, 华晓麟1, 姚彬彬1, 陈凡1
收稿日期:
2024-01-22
修回日期:
2024-04-09
出版日期:
2024-11-13
发布日期:
2024-11-19
通讯作者:
章殿清
第一作者简介:
王玉芳(1978-),女,副教授,博士,研究方向为生产调度与优化。
基金资助:
Wang Yufang1,2,3, Zhang Dianqing1, Hua Xiaolin1, Yao Binbin1, Chen Fan1
Received:
2024-01-22
Revised:
2024-04-09
Online:
2024-11-13
Published:
2024-11-19
Contact:
Zhang Dianqing
摘要:
考虑航空结构件生产中精工序的员工约束和分布式多工厂协作需求,建立双资源约束分布式柔性作业车间调度模型。提出一种基于关键工厂的混合灰狼优化算法来解决该问题。针对模型的工厂选择、工序排序、机器选择以及员工选择4个子问题,设计了4层编码及新型解码方式以避免机器员工的使用冲突。结合模型的工厂约束和员工约束特征,设计一种新的狼群捕猎和猎物搜索机制,保证种群多样性的同时提高算法全局探索能力。针对分布式特性,设计基于关键工厂的局部搜索策略,提高算法的局部搜索能力。通过扩展标准算例和航空结构件实例分析,验证了所提算法求解双资源约束分布式柔性调度的有效性。
中图分类号:
王玉芳,章殿清,华晓麟等 . 面向航空结构件的双资源分布式柔性调度研究[J]. 系统仿真学报, 2024, 36(11): 2722-2740.
Wang Yufang,Zhang Dianqing,Hua Xiaolin,et al . Dual-Resource Constrained Distributed Flexible Scheduling for Aerospace Structural Components[J]. Journal of System Simulation, 2024, 36(11): 2722-2740.
表1
DRCDFJSP模型符号定义
符号 | 定义 |
---|---|
结构件序号 | |
工序序号 | |
精工序序号 | |
机器序号 | |
工厂序号 | |
员工编号 | |
结构件总数 | |
结构件 | |
工厂总数 | |
第 | |
结构件 | |
结构件 | |
一个足够大的正数 | |
结构件 | |
0-1决策变量,如果结构件i选择在工厂f加工,则 | |
0-1决策变量,当 | |
0-1决策变量,当 | |
0-1决策变量,精工序 | |
0-1决策变量,当 | |
连续决策变量,表示最大完工时间 |
表5
策略有效性对比结果
算例 | n × m× w | CFHGWO-4 | CFHGWO-5 | CFHGWO-6 | CFHGWO | ||||
---|---|---|---|---|---|---|---|---|---|
BRPD | ARPD | BRPD | ARPD | BRPD | ARPD | BRPD | ARPD | ||
DMK01 | 10×6×5 | 25.00 | 21.88 | 14.29 | 14.38 | 20.00 | 18.03 | 20.00 | 17.49 |
DMK02 | 10×6×5 | 14.81 | 16.36 | 8.00 | 10.85 | 8.00 | 12.55 | 14.81 | 15.75 |
DMK03 | 15×8×7 | 9.93 | 8.13 | 7.30 | 6.14 | 10.56 | 9.47 | 11.19 | 10.34 |
DMK04 | 15×8×7 | 15.69 | 14.56 | 4.44 | 5.58 | 12.24 | 12.00 | 14.00 | 13.04 |
DMK05 | 15×4×4 | 9.40 | 10.08 | 4.50 | 3.60 | 7.83 | 8.78 | 7.83 | 8.78 |
DMK06 | 10×15×8 | 13.04 | 10.79 | 7.69 | 9.62 | 7.69 | 7.46 | 6.25 | 6.91 |
DMK07 | 20×5×4 | 14.16 | 15.02 | 9.35 | 9.01 | 14.16 | 14.14 | 11.82 | 12.85 |
DMK08 | 20×10×8 | 12.35 | 9.45 | 4.59 | 5.22 | 11.82 | 11.17 | 10.19 | 10.44 |
DMK09 | 20×10×8 | 12.74 | 9.92 | 2.59 | 4.36 | 12.74 | 10.88 | 13.41 | 10.88 |
DMK10 | 20×15×12 | 10.80 | 10.55 | 9.52 | 8.02 | 9.52 | 8.45 | 9.95 | 9.13 |
DLA01 | 10×5×4 | 14.67 | 15.59 | 0 | 0.60 | 9.43 | 16.06 | 12.13 | 15.90 |
DLA02 | 10×5×4 | 16.35 | 19.59 | 0 | 2.01 | 15.27 | 20.56 | 15.27 | 21.06 |
DLA03 | 10×5×4 | 29.92 | 29.71 | 0 | 4.02 | 24.95 | 32.56 | 26.99 | 31.88 |
DLA04 | 10×5×4 | 15.56 | 19.31 | 0 | 1.81 | 11.08 | 12.56 | 12.35 | 14.64 |
DLA05 | 10×5×4 | 0 | 5.35 | 0 | 0 | 0 | 4.28 | 0 | 4.52 |
DLA06 | 15×5×4 | 21.17 | 20.63 | 3.98 | 2.45 | 20.49 | 18.04 | 18.51 | 17.54 |
DLA07 | 15×5×4 | 25.13 | 25.02 | 3.14 | 2.22 | 21.17 | 22.19 | 22.16 | 23.21 |
DLA08 | 15×5×4 | 22.57 | 20.73 | 1.79 | 1.26 | 16.86 | 18.35 | 17.48 | 20.17 |
DLA09 | 15×5×4 | 25.61 | 25.14 | 3.19 | 2.34 | 21.90 | 23.81 | 23.26 | 23.76 |
DLA10 | 15×5×4 | 30.64 | 31.26 | 3.23 | 2.23 | 28.57 | 29.03 | 29.10 | 29.52 |
Mean | 16.98 | 16.95 | 4.38 | 4.79 | 14.21 | 15.52 | 14.84 | 15.89 | |
算例 | n × m× w | CFHGWO-4 | CFHGWO-5 | CFHGWO-6 | CFHGWO | ||||
BRPD | ARPD | BRPD | ARPD | BRPD | ARPD | BRPD | ARPD | ||
DMK01 | 10×6×5 | 17.24 | 14.68 | 11.11 | 12.59 | 14.29 | 16.67 | 0 | 0 |
DMK02 | 10×6×5 | 0 | 0 | 0 | 6.50 | 17.86 | 17.86 | 0 | 0 |
DMK03 | 15×8×7 | 4.51 | 4.90 | 5.93 | 7.54 | 11.19 | 10.34 | 0 | 0 |
DMK04 | 15×8×7 | 0 | 2.22 | 0 | 4.97 | 8.51 | 10.20 | 2.27 | 0 |
DMK05 | 15×4×4 | 5.36 | 5.56 | 4.50 | 5.56 | 7.83 | 8.31 | 0 | 0 |
DMK06 | 10×15×8 | 6.25 | 4.62 | 4.76 | 7.46 | 9.09 | 8.28 | 0 | 0 |
DMK07 | 20×5×4 | 5.83 | 5.35 | 6.73 | 6.60 | 6.73 | 11.37 | 0 | 0 |
DMK08 | 20×10×8 | 0 | 4.63 | 4.28 | 4.63 | 11.01 | 10.44 | 0 | 0 |
DMK09 | 20×10×8 | 0.88 | 0.60 | 1.74 | 2.27 | 11.72 | 10.54 | 1.74 | 0 |
DMK10 | 20×15×12 | 5.47 | 4.55 | 7.32 | 6.70 | 9.95 | 7.89 | 0 | 0 |
DLA01 | 10×5×4 | 0 | 0.12 | 0 | 0.24 | 8.22 | 15.59 | 0 | 0 |
DLA02 | 10×5×4 | 0 | 1.62 | 0 | 1.82 | 11.86 | 19.59 | 0 | 0 |
DLA03 | 10×5×4 | 0 | 2.65 | 0 | 4.02 | 21.40 | 29.71 | 0 | 0 |
DLA04 | 10×5×4 | 0 | 0.81 | 0 | 0.94 | 9.34 | 12.35 | 0 | 0 |
DLA05 | 10×5×4 | 0 | 0 | 0 | 0 | 0 | 3.26 | 0 | 0 |
DLA06 | 15×5×4 | 1.93 | 1.60 | 2.55 | 1.06 | 17.33 | 17.36 | 0 | 0 |
DLA07 | 15×5×4 | 1.82 | 1.72 | 4.42 | 3.66 | 19.40 | 20.43 | 0 | 0 |
DLA08 | 15×5×4 | 1.79 | 1.00 | 0 | 0.58 | 15.25 | 14.92 | 0.45 | 0 |
DLA09 | 15×5×4 | 1.22 | 2.02 | 2.61 | 1.68 | 19.44 | 21.89 | 0 | 0 |
DLA10 | 15×5×4 | 0.83 | 1.32 | 2.04 | 1.82 | 25.93 | 25.79 | 0 | 0 |
Mean | 2.66 | 3.00 | 2.90 | 4.03 | 12.82 | 14.64 | 0.22 | 0 |
表6
策略有效性配对样本t-检验结果
t-检验 | P-value (BRPD) | P-value (ARPD) |
---|---|---|
t-检验(CFHGWO, CFHGWO-0) | 5.486 84e-06 | 5.563 92e-06 |
t-检验(CFHGWO, CFHGWO-1) | 3.886 62e-04 | 4.844 08e-05 |
t-检验(CFHGWO, CFHGWO-2) | 6.092 91e-06 | 1.182 06e-06 |
t-检验(CFHGWO, CFHGWO-3) | 4.782 08e-06 | 1.331 15e-06 |
t-检验(CFHGWO, CFHGWO-4) | 0.043 78 | 0.004 92 |
t-检验(CFHGWO, CFHGWO-5) | 0.002 04 | 2.306 44e-04 |
t-检验(CFHGWO, CFHGWO-6) | 6.136 87e-06 | 2.652 42e-06 |
表7
2个工厂的DRCDFJSP实验结果
算例 | n × m× w | ABC | CA | GA | IGWO | CFHGWO | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
BRPD | ARPD | BRPD | ARPD | BRPD | ARPD | BRPD | ARPD | BRPD | ARPD | ||
Mean | 8.14 | 10.55 | 11.25 | 10.98 | 2.83 | 3.77 | 3.18 | 3.26 | 0.68 | 0.69 | |
DMK01 | 10×6×5 | 4.00 | 14.22 | 15.96 | 16.67 | 11.11 | 14.79 | 14.29 | 14.61 | 0 | 0 |
DMK02 | 10×6×5 | 23.08 | 29.34 | 20 | 20.74 | 13.04 | 10.20 | 0 | 0 | 13.04 | 10.42 |
DMK03 | 15×8×7 | 2.31 | 3.70 | 7.30 | 6.51 | 1.55 | 7.60 | 1.55 | 1.31 | 0 | 0 |
DMK04 | 15×8×7 | 10.52 | 26.74 | 12.50 | 10.74 | 0 | 0 | 0 | 1.27 | 0 | 2.52 |
DMK05 | 15×4×4 | 10.29 | 15.43 | 15.52 | 14.85 | 2.04 | 2.79 | 1.74 | 0.58 | 0 | 0 |
DMK06 | 10×15×8 | 6.52 | 8.67 | 9.09 | 7.08 | 10 | 8.36 | 8.78 | 10.07 | 0 | 0 |
DMK07 | 20×5×4 | 8.75 | 8.60 | 16.96 | 11.77 | 4.55 | 10.13 | 7.46 | 6.73 | 0 | 0 |
DMK08 | 20×10×8 | 7.72 | 8.42 | 12.14 | 11.44 | 0.66 | 0.35 | 4.66 | 3.55 | 0 | 0 |
DMK09 | 20×10×8 | 7.66 | 10.99 | 11.81 | 13.18 | 0 | 1.87 | 4.82 | 7.51 | 0 | 0 |
DMK10 | 20×15×12 | 11.89 | 13.72 | 11.88 | 16.66 | 8.11 | 8.38 | 7.29 | 11.43 | 0 | 0 |
DLA01 | 10×5×4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
DLA02 | 10×5×4 | 2.48 | 4.66 | 6.86 | 7.49 | 0 | 0 | 0 | 0 | 0 | 0 |
DLA03 | 10×5×4 | 14.56 | 14.75 | 14.57 | 19.32 | 0 | 2.83 | 0 | 0 | 0 | 0 |
DLA04 | 10×5×4 | 2.89 | 4.38 | 9.40 | 11.81 | 0 | 1.47 | 0 | 0 | 0 | 0.82 |
DLA05 | 10×5×4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
DLA06 | 15×5×4 | 9.13 | 5.92 | 12.49 | 8.62 | 1.16 | 1.58 | 2.09 | 0.76 | 0 | 0 |
DLA07 | 15×5×4 | 8.30 | 9.84 | 9.86 | 10.99 | 0 | 1.79 | 0.46 | 2.70 | 0 | 0 |
DLA08 | 15×5×4 | 13.39 | 13.35 | 15.12 | 12.25 | 2.20 | 1.19 | 6.18 | 3.60 | 0 | 0 |
DLA09 | 15×5×4 | 9.55 | 7.47 | 13.73 | 10.72 | 0.92 | 0.25 | 4.26 | 0.92 | 0 | 0 |
DLA10 | 15×5×4 | 9.76 | 10.83 | 9.73 | 8.74 | 1.30 | 1.86 | 0 | 0.18 | 0.60 | 0 |
表8
3个工厂的DRCDFJSP实验结果
算例 | n × m× w | ABC | CA | GA | IGWO | CFHGWO | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
BRPD | ARPD | BRPD | ARPD | BRPD | BRPD | BRPD | ARPD | BRPD | ARPD | ||
Mean | 5.75 | 6.95 | 8.21 | 8.93 | 2.35 | 4.16 | 0.54 | 2.17 | 0.12 | 0.24 | |
DMK01 | 10×6×5 | 0 | 7.76 | 7.69 | 10.18 | 7.20 | 11.29 | 0 | 9.00 | 0 | 0 |
DMK02 | 10×6×5 | 4.82 | 8.30 | 0 | 9.09 | 4.76 | 9.10 | 4.76 | 18.26 | 0 | 0 |
DMK03 | 15×8×7 | 6.86 | 8.59 | 9.52 | 8.17 | 11.21 | 12.44 | 1.04 | 2.09 | 0 | 0 |
DMK04 | 15×8×7 | 7.32 | 9.08 | 11.63 | 12.63 | 0 | 3.32 | 2.56 | 0 | 0 | 0 |
DMK05 | 15×4×4 | 14.77 | 14.26 | 19.35 | 19.19 | 1.32 | 2.21 | 0 | 0 | 0 | 1.47 |
DMK06 | 10×15×8 | 5.51 | 6.80 | 8.62 | 9.91 | 3.67 | 14.36 | 0 | 8.94 | 1.85 | 0 |
DMK07 | 20×5×4 | 5.41 | 8.48 | 12.50 | 11.58 | 4.11 | 6.37 | 0 | 2.32 | 0 | 0 |
DMK08 | 20×10×8 | 11.11 | 11.14 | 13.60 | 13.71 | 1.37 | 3.37 | 0.46 | 0 | 0 | 1.45 |
DMK09 | 20×10×8 | 10.85 | 11.04 | 14.07 | 13.23 | 2.69 | 3.92 | 0 | 0.11 | 0 | 0 |
DMK10 | 20×15×12 | 7.13 | 7.26 | 7.85 | 8.13 | 6.51 | 6.41 | 0 | 0 | 0.63 | 1.88 |
DLA01 | 10×5×4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
DLA02 | 10×5×4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
DLA03 | 10×5×4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
DLA04 | 10×5×4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
DLA05 | 10×5×4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
DLA06 | 15×5×4 | 9.43 | 14.17 | 10.12 | 13.69 | 0 | 3.84 | 0 | 1.40 | 0 | 0 |
DLA07 | 15×5×4 | 11.69 | 13.19 | 17.74 | 16.28 | 0 | 1.71 | 0 | 0.30 | 0 | 0 |
DLA08 | 15×5×4 | 9.57 | 7.46 | 13.56 | 14.07 | 3.18 | 4.00 | 0.53 | 0.72 | 0 | 0 |
DLA09 | 15×5×4 | 6.24 | 5.11 | 9.65 | 8.95 | 0.97 | 0.78 | 1.35 | 0.15 | 0 | 0 |
DLA10 | 15×5×4 | 4.32 | 6.45 | 8.27 | 9.83 | 0 | 0 | 0 | 0 | 0 | 0 |
表10
结构件工序信息
结构件 | 工序1 | 工序2 | 工序3 | 工序4 | 工序5 | 工序6 | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
名称 | 时间/机器 | 名称 | 时间/机器 | 名称 | 时间/机器 | 名称 | 时间/机器 | 名称 | 时间/机器 | 名称 | 时间/机器 | |||||||
J1 | 数控车 | 3/M14 4/M15 | 2/M24 4/M25 | 车端面 | 5/M11 4/M12 4/M13 | 6/M21 5/M22 4/M23 | 车外圆 | 8/M11 6/M12 7/M13 | 9/M21 7/M22 7/M23 | 镗孔 | 5/M18 | 5/M28 | 钳 | 3/M110 | 3/M210 | 车槽 | 4/M11 5/M12 4/M13 | 5/M21 6/M22 3/M23 |
J2 | 车端面 | 3/M11 4/M12 5/M13 | 6/M21 4/M22 5/M23 | 镗孔 | 4/M18 | 4/M28 | 钳 | 2/M110 | 2/M210 | 铣平面 | 3/M16 4/M17 | 3/M26 4/M27 | 数控车 | 3/M14 4/M15 | 2/M24 4/M25 | 车外圆 | 5/M11 5/M12 7/M13 | 6/M21 7/M22 5/M23 |
J3 | 车外圆 | 8/M11 8/M12 9/M13 | 9/M21 8/M22 9/M23 | 车端面 | 4/M11 6/M12 4/M13 | 5/M21 5/M22 4/M23 | 检验 | 3/M19 | 3/M29 | 镗孔 | 4/M18 | 4/M28 | 数控车 | 5/M14 4/M15 | 6/M24 4/M25 | 铣平面 | 6/M16 4/M17 | 5/M26 4/M27 |
J4 | 热处理 | 3/M111 | 3/M211 | 车槽 | 6/M11 6/M12 5/M13 | 5/M21 6/M22 7/M23 | 镗孔 | 5/M18 | 4/M28 | 钳 | 6/M110 | 6/M210 | 车外圆 | 3/M11 4/M12 5/M13 | 4/M21 5/M22 6/M23 | 车端面 | 8/M11 9/M12 8/M13 | 7/M21 9/M22 7/M23 |
J5 | 车外圆 | 4/M11 5/M12 5/M13 | 5/M21 7/M22 4/M23 | 铣键槽 | 3/M16 3/M17 | 4/M26 4/M27 | 热处理 | 6/M111 | 6/M211 | 数控车 | 2/M14 3/M15 | 2/M24 4/M25 | 铣平面 | 5/M16 4/M17 | 4/M26 5/M27 | 车端面 | 6/M11 6/M12 5/M13 | 6/M21 7/M22 5/M23 |
J6 | 车外圆 | 2/M11 3/M12 2/M13 | 3/M21 2/M22 4/M23 | 铣平面 | 6/M16 5/M17 | 5/M26 5/M27 | 数控车 | 5/M14 4/M15 | 5/M24 4/M25 | 镗孔 | 2/M18 | 2/M28 | 车槽 | 7/M11 6/M12 6/M13 | 8/M21 6/M22 7/M23 | 钳 | 6/M110 | 6/M210 |
J7 | 车外圆 | 7/M11 8/M12 8/M13 | 8/M21 7/M22 9/M23 | 检验 | 6/M19 | 6/M29 | 镗孔 | 4/M18 | 4/M28 | 铣平面 | 7/M16 6/M17 | 8/M26 6/M27 | 铣键槽 | 5/M16 6/M17 | 6/M26 4/M27 | 数控车 | 8/M14 8/M15 | 8/M24 9/M25 |
J8 | 钳 | 3/M110 | 3/M210 | 数控车 | 4/M14 5/M15 | 3/M24 4/M25 | 车槽 | 8/M11 9/M12 8/M13 | 9/M21 7/M22 9/M23 | 铣键槽 | 8/M16 7/M17 | 7/M26 8/M27 | 车端面 | 7/M11 5/M12 6/M13 | 6/M21 7/M22 4/M23 | 铣平面 | 5/M16 6/M17 | 7/M26 6/M27 |
J9 | 车槽 | 6/M11 8/M12 8/M13 | 6/M21 8/M22 7/M23 | 车外圆 | 5/M11 4/M12 5/M13 | 5/M21 6/M22 4/M23 | 镗孔 | 3/M18 | 3/M28 | 数控车 | 7/M14 6/M15 | 8/M24 6/M25 | 检验 | 5/M19 | 6/M29 | 车端面 | 6/M11 5/M12 4/M13 | 6/M21 7/M22 4/M23 |
J10 | 车端面 | 8/M11 5/M12 6/M13 | 5/M21 7/M22 6/M23 | 铣平面 | 6/M16 7/M17 | 7/M26 7/M27 | 钳 | 2/M110 | 3/M210 | 车外圆 | 7/M11 8/M12 6/M13 | 8/M21 7/M22 5/M23 | 车槽 | 5/M11 4/M12 5/M13 | 5/M21 4/M22 6/M23 | 检验 | 4/M19 | 3/M29 |
J11 | 数控车 | 8/M14 7/M15 | 8/M24 6/M25 | 铣平面 | 5/M16 6/M17 | 8/M26 5/M27 | 车槽 | 8/M11 8/M12 6/M13 | 8/M21 8/M22 5/M23 | 车外圆 | 7/M11 7/M12 6/M13 | 7/M21 7/M22 5/M23 | 热处理 | 3/M111 | 3/M211 | 车端面 | 5/M11 5/M12 6/M13 | 5/M21 6/M22 5/M23 |
J12 | 铣平面 | 6/M16 7/M17 | 6/M26 8/M27 | 车端面 | 9/M11 8/M12 8/M13 | 8/M21 9/M22 7/M23 | 镗孔 | 2/M18 | 3/M28 | 车外圆 | 4/M11 4/M12 6/M13 | 5/M21 6/M22 5/M23 | 铣键槽 | 4/M16 5/M17 | 5/M26 6/M27 | 车槽 | 8/M11 8/M12 9/M13 | 9/M21 7/M22 8/M23 |
J13 | 热处理 | 2/M111 | 2/M211 | 铣平面 | 6/M16 7/M17 | 6/M26 8/M27 | 钳 | 2/M110 | 2/M210 | 车端面 | 7/M11 8/M12 7/M13 | 8/M21 7/M22 7/M23 | 车槽 | 9/M11 10/M12 10/M13 | 8/M21 10/M22 9/M23 | 数控车 | 5/M14 6/M15 | 5/M24 6/M25 |
J14 | 数控车 | 6/M14 6/M15 | 7/M24 6/M25 | 车槽 | 7/M11 8/M12 9/M13 | 8/M21 7/M22 9/M23 | 铣键槽 | 7/M16 7/M17 | 7/M26 8/M27 | 车端面 | 7/M11 5/M12 6/M13 | 8/M21 6/M22 5/M23 | 镗孔 | 3/M18 | 3/M28 | 检验 | 2/M19 | 3/M29 |
J15 | 铣键槽 | 6/M16 7/M17 | 7/M26 6/M27 | 钳 | 2/M110 | 3/M210 | 镗孔 | 3/M18 | 3/M28 | 数控车 | 8/M14 6/M15 | 8/M24 7/M25 | 车端面 | 6/M11 8/M12 6/M13 | 8/M21 8/M22 5/M23 | 车外圆 | 8/M11 7/M12 5/M13 | 7/M21 7/M22 5/M23 |
表11
工序可选机器与员工信息
工序 名称 | 对应机器 | 对应员工 | ||
---|---|---|---|---|
U1 | U2 | U1 | U2 | |
车外圆 | M11,M12,M13 | M21,M22,M23 | W11,W12,W13 | W21,W22,W23 |
车端面 | M11,M12,M13 | M21,M22,M23 | W11,W12,W13 | W21,W22,W23 |
数控车 | M14,M15 | M24,M25 | W14,W15 | W24,W25 |
镗孔 | M18 | M28 | W15,W16 | W25,W26 |
铣平面 | M16,M17 | M26,M27 | W11,W14 | W21,W24 |
车槽 | M11,M12,M13 | M21,M22,M23 | W11,W12,W13 | W21,W22,W23 |
铣键槽 | M16,M17 | M26,M27 | W11,W14 | W21,W24 |
检验 | M19 | M29 | — | — |
钳 | M110 | M210 | — | — |
热处理 | M111 | M211 | — | — |
表12
求解6个实例对比结果
算例 | n × m × f | ABC | CA | GA | IGWO | CFHGWO | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
BRPD | ARPD | BRPD | ARPD | BRPD | ARPD | BRPD | ARPD | BRPD | ARPD | ||
Mean | 19.04 | 19.16 | 22.45 | 22.59 | 4.00 | 3.79 | 5.02 | 4.95 | 0 | 0.095 | |
DHT01 | 15×11×2 | 40.00 | 30.92 | 33.11 | 34.25 | 4.51 | 4.36 | 26.67 | 26.22 | 0 | 0 |
DHT02 | 15×8×2 | 20.76 | 17.97 | 24.69 | 23.31 | 3.70 | 2.41 | 2.47 | 1.58 | 0 | 0 |
DHT03 | 20×5×2 | 11.64 | 13.88 | 15.47 | 16.28 | 2.83 | 3.32 | 0 | 0.33 | 0 | 0 |
DHT04 | 30×11×3 | 15.67 | 14.67 | 20.52 | 17.61 | 3.36 | 3.39 | 0.37 | 1.04 | 0 | 0 |
DHT05 | 50×10×4 | 11.76 | 18.06 | 21.74 | 22.26 | 4.35 | 5.20 | 0.62 | 0.54 | 0 | 0 |
DHT06 | 60×15×4 | 14.38 | 19.44 | 19.18 | 21.80 | 5.27 | 4.05 | 0 | 0 | 0 | 0.57 |
1 | Gao Liang, Pan Quanke. A Shuffled Multi-swarm Micro-Migrating Birds Optimizer for a Multi-resource-constrained Flexible Job Shop Scheduling Problem[J]. Information Sciences, 2016, 372: 655-676. |
2 | Nelson R T. Labor and Machine Limited Production Systems[J]. Management Science, 1967, 13(9): 648-671. |
3 | Wu Xiuli, Peng Junjian, Xiao Xiao, et al. An Effective Approach for the Dual-resource Flexible Job Shop Scheduling Problem Considering Loading and Unloading[J]. Journal of Intelligent Manufacturing, 2021, 32(3): 707-728. |
4 | 刘璐, 宋海草, 姜天华, 等. 基于改进生物迁徙算法的双资源柔性作业车间节能调度问题[J/OL]. 计算机集成制造系统. (2022-07-12) [2022-12-07]. . |
Liu Lu, Song Haicao, Jiang Tianhua, et al. Modified Biology Migration Algorithm for Dual-resource Energy-saving Flexible Job Shop Scheduling Problem[J/OL]. Computer Integrated Manufacturing Systems. (2022-07-12) [2022-12-07]. . | |
5 | Tan Weihua, Yuan Xiaofang, Wang Jinlei, et al. A Fatigue-conscious Dual Resource Constrained Flexible Job Shop Scheduling Problem by Enhanced NSGA-II: An Application from Casting Workshop[J]. Computers & Industrial Engineering, 2021, 160: 107557. |
6 | Zhang Shoujing, Du Haotian, Borucki Sebastian, et al. Dual Resource Constrained Flexible Job Shop Scheduling Based on Improved Quantum Genetic Algorithm[J]. Machines, 2021, 9(6): 108. |
7 | 娄航宇, 张吉善, 赵云博. 基于扩展双资源约束型航空构件制造车间调度方法[J]. 计算机集成制造系统, 2020, 26(12): 3329-3340. |
Lou Hangyu, Zhang Jishan, Zhao Yunbo. Scheduling Method for Aerospace Components Production Shop Based on Extended Dual Resource Constrains[J]. Computer Integrated Manufacturing Systems, 2020, 26(12): 3329-3340. | |
8 | 王凌, 邓瑾, 王圣尧. 分布式车间调度优化算法研究综述[J]. 控制与决策, 2016, 31(1): 1-11. |
Wang Ling, Deng Jin, Wang Shengyao. Survey on Optimization Algorithms for Distributed Shop Scheduling[J]. Control and Decision, 2016, 31(1): 1-11. | |
9 | 孟磊磊, 张彪, 任亚平, 等. 求解分布式柔性作业车间调度的混合蛙跳算法[J]. 机械工程学报, 2021, 57(17): 263-272. |
Meng Leilei, Zhang Biao, Ren Yaping, et al. Hybrid Shuffled Frog-leaping Algorithm for Distributed Flexible Job Shop Scheduling[J]. Journal of Mechanical Engineering, 2021, 57(17): 263-272. | |
10 | Wu M C, Lin C S, Lin C H, et al. Effects of Different Chromosome Representations in Developing Genetic Algorithms to Solve DFJS Scheduling Problems[J]. Computers & Operations Research, 2017, 80: 101-112. |
11 | Li Xinyu, Xie Jin, Ma Qingji, et al. Improved Gray Wolf Optimizer for Distributed Flexible Job Shop Scheduling Problem[J]. Science China Technological Sciences, 2022, 65(9): 2105-2115. |
12 | 郭晨, 曾思豪, 郭钧, 等. 混合分布估计算法求解模糊分布式装配柔性车间调度问题[J]. 系统工程理论与实践, 2021, 41(4): 1037-1048. |
Guo Chen, Zeng Sihao, Guo Jun, et al. Hybrid Estimation of Distribution Algorithm for Distributed Assembly Flexible Job Shop Scheduling Problem with Fuzzy Processing Time[J]. Systems Engineering-Theory & Practice, 2021, 41(4): 1037-1048. | |
13 | Mirjalili Seyedali, Seyed Mohammad Mirjalili, Lewis Andrew. Grey Wolf Optimizer[J]. Advances in Engineering Software, 2014, 69: 46-61. |
14 | 时维国, 宋存利. 求解混合流水车间调度问题的改进灰狼算法[J]. 计算机集成制造系统, 2021, 27(11): 3196-3208. |
Shi Weiguo, Song Cunli. Improved Grey Wolf Optimization for Solving Hybrid Flow Shop Scheduling Problem[J]. Computer Integrated Manufacturing Systems, 2021, 27(11): 3196-3208. | |
15 | 顾九春, 姜天华, 朱惠琦. 多目标离散灰狼优化算法求解作业车间节能调度问题[J]. 计算机集成制造系统, 2021, 27(8): 2295-2306. |
Gu Jiuchun, Jiang Tianhua, Zhu Huiqi. Energy-saving Job Shop Scheduling Problem with Multi-objective Discrete Grey Wolf Optimization Algorithm[J]. Computer Integrated Manufacturing Systems, 2021, 27(8): 2295-2306. | |
16 | Jiang Tianhua, Zhang Chao. Application of Grey Wolf Optimization for Solving Combinatorial Problems: Job Shop and Flexible Job Shop Scheduling Cases[J]. IEEE Access, 2018, 6: 26231-26240. |
17 | 王玉芳, 曾亚志, 蒋亚飞. 基于自适应灰狼优化算法的柔性作业车间调度问题[J]. 现代制造工程, 2022(7): 1-10. |
Wang Yufang, Zeng Yazhi, Jiang Yafei. Flexible Job Shop Scheduling Problem Based on Adaptive Grey Wolf Optimization Algorithm[J]. Modern Manufacturing Engineering, 2022(7): 1-10. | |
18 | Zhang Guohui, Gao Liang, Shi Yang. An Effective Genetic Algorithm for the Flexible Job-shop Scheduling Problem[J]. Expert Systems with Applications, 2011, 38(4): 3563-3573. |
19 | 张超勇, 饶运清, 刘向军, 等. 基于POX交叉的遗传算法求解Job-Shop调度问题[J]. 中国机械工程, 2004, 15(23): 2149-2153. |
Zhang Chaoyong, Rao Yunqing, Liu Xiangjun, et al. An Improved Genetic Algorithm for the Job Shop Scheduling Problem[J]. China Mechanical Engineering, 2004, 15(23): 2149-2153. | |
20 | J M van Laarhoven Peter, H L Aarts Emile, Jan Karel Lenstra. Job Shop Scheduling by Simulated Annealing[J]. Operations Research, 1992, 40(1): 113-125. |
21 | Dell'Amico Mauro, Trubian Marco. Applying tabu Search to the Job-shop Scheduling Problem[J]. Annals of Operations Research, 1993, 41(3): 231-252. |
22 | Nowicki Eugeniusz, Smutnicki Czeslaw. A Fast Taboo Search Algorithm for the Job Shop Problem[J]. Management Science, 1996, 42(6): 797-813. |
23 | Brandimarte Paolo. Routing and Scheduling in a Flexible Job Shop by Tabu Search[J]. Annals of Operations Research, 1993, 41(3): 157-183. |
24 | De Giovanni L, Pezzella F. An Improved Genetic Algorithm for the Distributed and Flexible Job-shop Scheduling Problem[J]. European Journal of Operational Research, 2010, 200(2): 395-408. |
25 | 吴锐, 郭顺生, 李益兵, 等. 改进人工蜂群算法求解分布式柔性作业车间调度问题[J]. 控制与决策, 2019, 34(12): 2527-2536. |
Wu Rui, Guo Shunsheng, Li Yibing, et al. Improved Artificial Bee Colony Algorithm for Distributed and Flexible Job-shop Scheduling Problem[J]. Control and Decision, 2019, 34(12): 2527-2536. | |
26 | Wang Jingjing, Wang Ling, Wu Chuge, et al. A Cooperative Algorithm for Energy-efficient Scheduling of Distributed No-wait Flowshop[C]//2017 IEEE Symposium Series on Computational Intelligence (SSCI). Piscataway: IEEE, 2017: 1-8. |
27 | Lin C S, Li Peiyi, Wei Junmin, et al. Integration of Process Planning and Scheduling for Distributed Flexible Job Shops[J]. Computers & Operations Research, 2020, 124: 105053. |
[1] | 徐毓泽, 张林鍹, 李惠, 葛明, 何莞依. 考虑拆分策略的智能仓库订单分拣建模与优化[J]. 系统仿真学报, 2024, 36(3): 564-577. |
[2] | 张洪亮, 徐静茹, 谈波, 徐公杰. 考虑交货期的双资源柔性作业车间节能调度[J]. 系统仿真学报, 2023, 35(4): 734-746. |
[3] | 王田田, 王艳, 纪志成. 基于改进极限学习机的滚动轴承故障诊断[J]. 系统仿真学报, 2018, 30(11): 4413-4420. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||