1 |
司广宇, 苗艳, 李关防. 水下立体攻防体系构建技术[J]. 指挥控制与仿真, 2018, 40(1): 1-8.
|
|
Si Guangyu, Miao Yan, Li Guanfang. Underwater Tridimensional Attack-defense System Technology[J]. Command Control and Simulation, 2018, 40(1): 1-8.
|
2 |
何玉庆, 秦天一, 王楠. 跨域协同:无人系统技术发展和应用新趋势[J]. 无人系统技术, 2021, 4(4): 1-13.
|
|
He Yuqing, Qin Tianyi, Wang Nan. Cross-domain Collaboration: New Trends in the Development and Application of Unmanned Systems Technology[J]. Unmanned Systems Technology, 2021, 4(4): 1-13.
|
3 |
王雅琳, 杨依然, 王彤, 等. 2019年无人系统领域发展综述[J]. 无人系统技术, 2019, 2(6): 53-57.
|
|
Wang Yalin, Yang Yiran, Wang Tong, et al. Summary of the Development of Unmanned Systems in 2019[J]. Unmanned Systems Technology, 2019, 2(6): 53-57.
|
4 |
李磊, 王彤, 蒋琪. 从美军2042年无人系统路线图看无人系统关键技术发展动向[J]. 无人系统技术, 2018, 1(4): 79-84.
|
|
Li Lei, Wang Tong, Jiang Qi. Key Technology Develop Trends of Unmanned Systems Viewed from Unmanned Systems Integrated Roadmap 2017-2042[J]. Unmanned Systems Technology, 2018, 1(4): 79-84.
|
5 |
周光霞, 周方. 美军人工智能空战系统阿尔法初探[C]//第六届中国指挥控制大会论文集(上册). 北京: 电子工业出版社, 2018: 66-70.
|
6 |
王建丽, 张渭育. 统计学[M]. 北京: 清华大学出版社, 2010: 215-220.
|
7 |
周志华. 机器学习[M]. 北京: 清华大学出版社, 2016.
|
|
Zhou Zhihua. Machine Learning[M]. Beijing: Tsinghua University Press, 2016.
|
8 |
Quinlan J R. Induction of Decision Trees[J]. Machine Learning, 1986, 1(1): 81-106.
|
9 |
Olson R S, Moore J H. Identifying and Harnessing the Building Blocks of Machine Learning Pipelines for Sensible Initialization of a Data Science Automation Tool[M]//Riolo R, Worzel B, Goldman B, et al. Genetic Programming Theory and Practice XIV. Cham: Springer International Publishing, 2018: 211-223.
|
10 |
冯国双. 白话统计[M]. 北京: 电子工业出版社, 2018.
|
11 |
Peng Hanchuan, Long Fuhui, Ding C. Feature Selection Based on Mutual Information: Criteria of Max-dependency, Max-relevance, and Min-redundancy[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(8): 1226-1238.
|
12 |
Cortes C, Vapnik V. Support-vector Networks[J]. Machine Learning, 1995, 20(3): 273-297.
|
13 |
Narasimhamurthy A M. A Framework for the Analysis of Majority Voting[C]//Image Analysis. Berlin: Springer Berlin Heidelberg, 2003: 268-274.
|
14 |
Wolpert D H. Stacked Generalization[J]. Neural Networks, 1992, 5(2): 241-259.
|
15 |
Kuo C C J. Understanding Convolutional Neural Networks with a Mathematical Model[J]. Journal of Visual Communication and Image Representation, 2016, 41: 406-413.
|
16 |
夏恒, 汤健, 乔俊飞. 深度森林研究综述[J]. 北京工业大学学报, 2022, 48(2): 182-196.
|
|
Xia Heng, Tang Jian, Qiao Junfei. Review of Deep Forest[J]. Journal of Beijing University of Technology, 2022, 48(2): 182-196.
|
17 |
Goodfellow I, Pouget-Abadie J, Mirza M, et al. Generative Adversarial Networks[J]. Communications of the ACM, 2020, 63(11): 139-144.
|
18 |
Kingma Diederik P, Welling Max. Auto-encoding Variational Bayes[C]//ICLR 2014. New York, USA: ICLR, 2014.
|
19 |
Radford A, Metz L, Chintala S. Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks[EB/OL]. (2016-01-07)[2022-07-08]. .
|
20 |
Dumoulin Vincent, Visin Francesco. A Guide to Convolution Arithmetic for Deep Learning[EB/OL]. (2018-01-11) [2022-07-22]. .
|
21 |
Mirza Mehdi, Osindero S. Conditional Generative Adversarial Nets[EB/OL]. (2014-11-06) [2022-07-15]. .
|
22 |
Cover T M, Hart P E. Nearest Neighbor Pattern Classification[J]. IEEE Transactions on Information Theory, 1967, 13(1): 21-27.
|
23 |
Goodfellow Ian, Bengio Yoshua, Courville Aaron. Deep Learning[M]. Cambridge: MIT Press, 2016: 106-140.
|
24 |
Breiman L. Random Forests[J]. Machine Learning, 2001, 45(1): 5-32.
|
25 |
Freund Y, Schapire R E. A Decision-theoretic Generalization of on-line Learning and an Application to Boosting[J]. Journal of Computer and System Sciences, 1997, 55(1): 119-139.
|
26 |
Friedman J H. Greedy Function Approximation: A Gradient Boosting Machine[J]. Annals of Statistics, 2001, 29(5): 1189-1232.
|
27 |
Chen Tianqi, Guestrin C. XGBoost: A Scalable Tree Boosting System[C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York, NY, USA: Association for Computing Machinery, 2016: 785-794.
|
28 |
Ke Guolin, Meng Qi, Finley T, et al. LightGBM: A Highly Efficient Gradient Boosting Decision Tree[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems. Red Hook, NY, USA: Curran Associates Inc., 2017: 3149-3157.
|
29 |
Prokhorenkova Liudmila, Gusev Gleb, Vorobev Aleksandr, et al. CatBoost: Unbiased Boosting with Categorical Features[C]//Proceedings of the 32nd International Conference on Neural Information Processing Systems. Red Hook, NY, USA: Curran Associates Inc., 2018: 6639-6649.
|
30 |
Akiba Takuya, Sano Shotaro, Yanase Toshihiko, et al. Optuna: A Next-generation Hyperparameter Optimization Framework[C]//Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. New York, NY, USA: Association for Computing Machinery, 2019: 2623-2631.
|
31 |
Ozaki Yoshihiko, Tanigaki Yuki, Watanabe Shuhei, et al. Multiobjective Tree-structured Parzen Estimator for Computationally Expensive Optimization Problems[C]//GECCO 2020-Proceedings of the 2020 Genetic and Evolutionary Computation Conference. New York, NY, USA: Association for Computing Machinery, 2020: 533-541.
|
32 |
Simonyan K, Zisserman A. Very Deep Convolutional Networks for Large-scale Image Recognition[EB/OL]. (2015-04-10) [2022-08-03]. .
|
33 |
Gu Jiuxiang, Wang Zhenhua, Kuen J, et al. Recent Advances in Convolutional Neural Networks[J]. Pattern Recognition, 2018, 77: 354-377.
|
34 |
Ioffe S, Szegedy C. Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift[C]//Proceedings of the 32nd International Conference on International Conference on Machine Learning-Volume 37. Cambridge: JMLR, 2015: 448-456.
|
35 |
Santurkar S, Tsipras D, Ilyas A, et al. How Does Batch Normalization Help Optimization?[C]//Proceedings of the 32nd International Conference on Neural Information Processing Systems. Red Hook, NY, USA: Curran Associates Inc., 2018: 2488-2498.
|
36 |
Kingma Diederik P, Ba J L. Adam: A Method for Stochastic Optimization[EB/OL]. (2017-01-30) [2022-07-29]. .
|
37 |
石洪波, 陈雨文, 陈鑫. SMOTE过采样及其改进算法研究综述[J]. 智能系统学报, 2019, 14(6): 1073-1083.
|
|
Shi Hongbo, Chen Yuwen, Chen Xin. Summary of Research on SMOTE Oversampling and Its Improved Algorithms[J]. CAAI Transactions on Intelligent Systems, 2019, 14(6): 1073-1083.
|