系统仿真学报 ›› 2024, Vol. 36 ›› Issue (7): 1573-1585.doi: 10.16182/j.issn1004731x.joss.22-1265

• 研究论文 • 上一篇    

基于模型融合和生成网络的有效阵位智能决策方法

郭力强1(), 马亮1, 张会1, 杨静1, 李连峰2, 翟雅琪1   

  1. 1.海军潜艇学院,山东 青岛 266199
    2.中国人民解放军32114部队,黑龙江 牡丹江 157000
  • 收稿日期:2022-10-24 修回日期:2022-11-22 出版日期:2024-07-15 发布日期:2024-07-12
  • 第一作者简介:郭力强(1992-),男,硕士生,研究方向为武器装备智能决策技术。E-mail:javis019_ai@126.com
  • 基金资助:
    国家自然科学基金(62273352)

Effective Position Intelligent Decision Method Based on Model Fusion and Generative Network

Guo Liqiang1(), Ma Liang1, Zhang Hui1, Yang Jing1, Li Lianfeng2, Zhai Yaqi1   

  1. 1.Naval Submarine Academy, Qingdao 266199, China
    2.PLA 32114 Troops, Mudanjiang 157000, China
  • Received:2022-10-24 Revised:2022-11-22 Online:2024-07-15 Published:2024-07-12

摘要:

军事智能技术是当前最具活力的前沿领域和未来无人装备发展的必然趋势。针对无人平台在复杂环境下自主决策可靠性和实时性的双重需求和现有基于规则推演的作战仿真技术在动态性和灵活性方面的不足,采用原理分析与实验验证的研究方法,在某型无人平台射击实验数据集的基础上,围绕攻击决策的有效阵位识别环节,将其转换为机器学习领域类别不平衡的二分类问题,综合采用相关性分析、特征工程、模型融合技术构建高实时性和灵活性的有效阵位智能决策模型,并提出基于ICGAN-Stacking不平衡分类架构对少数类样本进行定向扩充,实现数据增强和模型性能提升。实验结果表明:所提方法召回率提升了4.1%、精确度提升了0.4%、F1值提升了1.5%、AUC值达到90.9%,能够满足无人平台执行作战任务实时性和可靠性需求。

关键词: 军事智能, 无人平台, 模型融合, 生成对抗网络, 不平衡分类

Abstract:

Military intelligence technology is currently the most dynamic frontier and the inevitable trend for the development of unmanned equipment in the future. Aiming at the dual requirements of reliability and real-time performance of unmanned platform autonomous decision-making in complex environments and the shortcomings of existing combat simulation technology based on rule reasoning in terms of dynamics and flexibility, a research method of principle analysis and experimental verification is adopted. Based on the shooting experiment dataset of an unmanned platform, the effective position recognition link of attack decision-making is transformed into a binary classification problem with imbalanced categories in the field of machine learning. The effective position intelligent decision-making model with high real-time performance and flexibility is constructed by using correlation analysis, feature engineering, and model fusion technology. Based on the imbalanced classification architecture of ICGAN-Stacking, directional expansion of minority class samples is proposed to achieve data enhancement and model performance improvement. The experimental results show that the recall rate of the proposed method has increased by 4.1%, the accuracy by 0.4%, and the F1 value by 1.5%, and the AUC value reaches 90.9%, which can meet the real-time performance and reliability requirements of the unmanned platform in performing combat tasks.

Key words: military intelligence, unmanned platform, model fusion, generative adversarial network, imbalance classification

中图分类号: