[1] 候印鸣. 综合电子战[M]. 北京: 国防工业出版社, 2000: 1-32. Hou Yinming.Synthetic EW[M]. Beijing: National Defense Industry Press, 2000: 1-32. [2] Pang J, Lin Y, Xu X.The Improved Radial Source Recognition Algorithm Based on Fractal Theory and Neural Network Theory[J]. International Journal of Hybrid Information Technology (S2511-2104), 2014, 7(2): 397-402. [3] Zhang X L, You W T, Guo Q, et al.Recognition Method Studies for Radar and Communication Signals based on Spectral Correlation[C]// International Symposium on Systems and Control in Aeronautics and Astronautics. Piscataway, USA: IEEE Press, 2010: 363-366. [4] Guo Q, Nan P, Zhang X, et al.Recognition of Radar Emitter Signals Based on SVD and AF Main Ridge Slice[J]. Journal of Communications and Networks (S1229-2370), 2015, 17(5): 491-498. [5] Li Y, Wang Y, Lin Y.Recognition of Radar Signals Modulation Based on Short Time Fourier Transform and Reduced Fractional Fourier Transform[J]. Journal of Information and Computational Science (S1548-7741), 2013, 10(16): 5171-5178. [6] Konopko K, Grishin Y P, Jańczak D.Radar Signal Recognition based on Time-frequency Representations and Multidimensional Probability Density Function Estimator[C]// Signal Processing Symposium. Debe, Poland: IEEE Press, 2015: 1-6. [7] 余志斌, 金炜东, 陈春霞. 基于小波脊频级联特征的雷达辐射源信号识别[J]. 西南交通大学学报, 2010, 45(2): 290-295. Yu Zhibin, Jin Weidong, Chen Chunxia.Radar Emitter Signal Recognition based on WRFCCF[J]. Journal of Southwest Jiaotong University, 2010, 45(2): 290-295. [8] Wang C, Wang J, Zhang X.Automatic Radar Waveform Recognition based on Time-frequency Analysis and Convolutional Neural Network[C]// IEEE International Conference on Acoustics, Speech and Signal Processing. New Orleans, USA: IEEE Press, 2017: 2437-2441. [9] Zhang M, Diao M, Guo L.Convolutional Neural Networks for Automatic Cognitive Radio Waveform Recognition[J]. IEEE Access (S2169-3536), 2017, 5(6): 11074-11082. [10] Zhou Z, Huang G, Chen H, et al.Automatic Radar Waveform Recognition Based on Deep Convolutional Denoising Auto-encoders[J]. Circuits Systems and Signal Processing (S0278-081X), 2018, 37(1): 1-15. [11] 周志文, 黄高明, 高俊, 等. 一种深度学习的雷达辐射源识别算法[J]. 西安电子科技大学学报, 2017, 44(3): 85-90. Zhou Zhiwen, Huang Gaoming, Gao Jun, et al.Radar Emitter Identification Algorithm based on Deep Learning[J]. Journal of Xidian University, 2017, 44(3): 85-90. [12] Zhang M, Diao M, Gao L, et al.Neural Networks for Radar Waveform Recognition[J]. Symmetry (S2073-8994), 2017, 9(5): 75. [13] Wan Y, Chen X L, Shi Y.Adaptive Cost Dynamic Time Warping Distance in Time Series Analysis for Classification[J]. Journal of Computational and Applied Mathematics (S0101-8205), 2017, 319(8): 514-520. [14] Zhang Z, Tavenard R, Bailly A, et al.Dynamic Time Warping Under Limited Warping Path Length[J]. Information Sciences (S0020-0255), 2017, 393(7): 91-107. [15] 余志斌. 基于脉内特征的雷达辐射源信号识别研究[D]. 成都: 西南交通大学, 2010. Yu Zhibin.Study on Radar Emitter Signal Identification based on Intra-pulse Features[D]. Chengdu: Southwest Jiaotong University, 2010. [16] Tsai C F, Lin W Y, Hong Z F, et al.Distance-based Features in Pattern Classification[J]. Eurasip Journal on Advances in Signal Processing (S1687-6172), 2011(1): 1-11. [17] Guo C, Zhou Y, Ping Y, et al.A Distance Sum-based Hybrid Method for Intrusion Detection[J]. Applied Intelligence (S0924-669X), 2014, 40(1): 178-188. [18] Lin W C, Ke S W, Tsai C F.CANN: An Intrusion Detection System Based on Combining Cluster Centers and Nearest Neighbors[J]. Knowledge-Based Systems (S0950-7051), 2015, 78(1): 13-21. [19] Kate R J.Using Dynamic Time Warping Distances as Features for Improved Time Series Classification[J]. Data Mining and Knowledge Discovery (S1384-5810), 2015, 30(2): 1-30. [20] Hall P, Pham T.Optimal Properties of Centroid-based Classifiers for Very High-dimensional Data[J]. Annals of Statistics (S0090-5364), 2010, 38(2): 1071-1093. [21] Mori U, Mendiburu A, Keogh E, et al.Reliable Early Classification of Time Series Based on Discriminating the Classes Over Time[J]. Data Mining and Knowledge Discovery (S1384-5810), 2016, 31(1): 1-31. [22] Mei J, Liu M, Wang Y F, et al.Learning a Mahalanobis Distance-based Dynamic Time Warping Measure for Multivariate Time Series Classification[J]. IEEE Transactions on Cybernetics (S2168-2267), 2016, 46(6): 1363-1374. [23] Pérezgonzález A, Vergara M, Sanchobru J L, et al.Visualizing Data Using t-SNE[J]. Journal of Machine Learning Research (S1532-4435), 2008, 9: 2579-2605. |