[1] |
Zhu Y Q, Liu Y F, Li J H, et al.An Optimal Glucose Feeding Strategy Integrated with Step-wise Regulation of the Dissolved Oxygen Level Improves N-acetylglucosamine Production In Recombinant Bacillus Subtilis[J]. Bioresource Technology (S0960-8524), 2015, 177: 387-392.
|
[2] |
郑昭奕. 生物法生产N-乙酰氨基葡萄糖[D]. 北京: 北京化工大学, 2018.Zheng Zhaoyi.Biological Production of N-acetylglucosamine[D]. Beijing: Beijing University of Chemical Technology, 2018.
|
[3] |
秦志杰, 岳秋林, 刘新利. 产N-乙酰氨基葡萄糖的工程菌构建、发酵及应用研究进展[J]. 中国酿造, 2018, 37(6): 6-9.Qin Zhijie, Yue Qiulin, Liu Xinli.Research Progress on Construction, Fermentation and Application of Engineered Bacteria for N-acetylglucosamine Production[J]. China Brewing, 2018, 37(6): 6-9.
|
[4] |
Wu J Q, Sun Y K, Huang Y H, et al.Soft Sensor Modeling Based on GRNN for Biological Parameters of Marine Protease Fermentation Process[C]// Proceedings of the 33rd Chinese Control Conference. Zhenjiang, China: IEEE, 2014: 5102-5106.
|
[5] |
郑蓉建, 潘丰. 基于PLS-LSSVM的谷氨酸发酵产物浓度预测建模[J]. 化工学报, 2017, 68(3): 976-983.Zheng Rongjian, Pan Feng.Prediction of Product Concentration in Glutamate Fermentation Process Using Partial Least Squares and Least Square Support Vector Machine[J]. CIESC Journal, 2017, 68(3): 976-983.
|
[6] |
朱湘临, 华天争. 基于混沌果蝇优化最小二乘支持向量机的秸秆发酵过程软测量建模[J]. 北京工业大学学报, 2016, 42(10): 1468-1474.Zhu Xianglin, Hua Tianzheng.Soft Sensor Model for Straw Fermentation Process Based on Least Squares Support Vector Machine Optimized by Chaos Fruit Fly Algorithm[J]. Journal of Beijing University of Technology, 2016, 42(10): 1468-1474.
|
[7] |
de M E M, Posada J A, Noorman H, et al. Dynamic Modeling of Syngas Fermentation in a Continuous Stirred-tank Reactor: Multi-response Parameter Estimation and Process Optimization[J]. Biotechnology and Bioengineering (S0006-3592), 2019, 116(10): 2473-2487.
|
[8] |
Sumeet K S, Yadwinder S B, Navdeep K, et al.Software Effort Estimation Using FAHP and Weighted Kernel LSSVM Machine[J]. Soft Computing (S1432-7643), 2019, 23(21): 10881-10900.
|
[9] |
邱忠超, 张卫民, 高玄怡, 等. 基于PSO-LSSVM的疲劳裂纹漏磁定量识别技术[J]. 北京理工大学学报, 2018, 38(11): 1101-1104, 1140.Qiu Zhongchao, Zhang Weimin, Gao Xuanyi, et al.Quantitative Identification of Magnetic Flux Leakage of Fatigue Crack Based on PSO-LSSVM[J]. Transactions of Beijing Institute of Technology, 2018, 38(11): 1101-1104, 1140.
|
[10] |
刘小龙. 改进多元宇宙算法求解大规模实值优化问题[J]. 电子与信息学报, 2019, 41(7): 1666-1673.Liu Xiaolong.Application of Improved Multiverse Algorithm to Large Scale Optimization Problems[J]. Journal of Electronics & Information Technology, 2019, 41(7): 1666-1673.
|
[11] |
Benmessahel I, Xie K, Chellal M.A New Evolutionary Neural Networks Based on Intrusion Detection Systems Using Multiverse Optimization[J]. Applied Intelligence (S0924-669X), 2018, 48(8): 2315-2327.
|
[12] |
Liu J, He D.An Mutational Multi-Verse Optimizer with Lévy Flight[C]// International Conference on Intelligent Computing. Berlin: Springer, Cham, 2018: 841-853.
|
[13] |
张新, 李珂, 严大虎, 等. 改进入侵杂草算法求解柔性作业车间调度问题[J]. 系统仿真学报, 2018, 30(11): 4469-4476.Zhang Xin, Li Ke, Yan Dahu, et al.Improved Intrusion Weed Algorithm for Solving Flexible Job Shop Scheduling Problem[J]. Journal of System Simulation, 2018, 30(11): 4469-4476.
|
[14] |
Ellis J, Petrovskaya N, Petrovskii S.Effect of Density-dependent Individual Movement on Emerging Spatial Population Distribution: Brownian Motion VS Levy flights[J]. Journal of theoretical biology (S0022-5193), 2018, 464: 159-178.
|