系统仿真学报 ›› 2022, Vol. 34 ›› Issue (5): 1127-1139.doi: 10.16182/j.issn1004731x.joss.20-0717

• 仿真建模理论与方法 • 上一篇    下一篇

基于非线性观测器的导航过程仿真研究

王志伟1,2(), 胡继宗1, 王风杰3, 黄杰2()   

  1. 1.武警部队项目管理中心,北京  100161
    2.武警工程大学,陕西  西安  710086
    3.陕西华阴63870部队,陕西  华阴  714200
  • 收稿日期:2020-09-18 修回日期:2020-11-20 出版日期:2022-05-18 发布日期:2022-05-25
  • 通讯作者: 黄杰 E-mail:wzw505869351@126.com;fktj2019@163.com
  • 作者简介:王志伟(1990-),男,博士,研究方向为惯性导航。E-mail:wzw505869351@126.com
  • 基金资助:
    国防预研基金(9140A09040112JB34111);国家自然科学基金(20171141401520)

Simulation of Navigation Process Based on Nonlinear Observer

Zhiwei Wang1,2(), Jizong Hu1, Fengjie Wang3, Jie Huang2()   

  1. 1.Project Management Center of PAP, Beijing 100161, China
    2.Engineering University of PAP, Xi’an 710086, China
    3.Unit 63870 of PLA, Huayin 714200, China
  • Received:2020-09-18 Revised:2020-11-20 Online:2022-05-18 Published:2022-05-25
  • Contact: Jie Huang E-mail:wzw505869351@126.com;fktj2019@163.com

摘要:

为解决传统观测器使用范围受假设条件限制的问题,在观测器建立过程中,设计了一种参数投影关系,并加入到观测器中,在不受假设条件约束的条件下使其保持半全局稳定,同时估计过程更加直接,使得非线性条件下的参数估计过程较快收敛。仿真结果表明,非线性观测器的计算量要比乘性扩展卡尔曼滤波减少了近80%。试验结果表明,非线性观测器的估计精度与乘性扩展卡尔曼滤波相当,并且可以有效提高参数估计的实时性,节约了时间,提高了导航效率。

关键词: 捷联惯性导航, 半全局一致指数稳定, 非线性观测器, 卫星辅助导航, 乘性扩展卡尔曼滤波

Abstract:

In order to solve the problem that the scope of using thetraditional observers is limited by assumptions, in the process of establishing the observer, a parameter projection relationship is designed and added to the observer to keep it under the condition of not being constrained by the assumptions. It is semi-globally stable, and the estimation process is more direct, which makes the parameter estimation process under nonlinear conditions converge faster. The simulation results show that the computational complexity of the nonlinear observer is reduced by nearly 80% compared with the multiplicative extended Kalman filter. The experimental results show that the estimation accuracy of the nonlinear observer is comparable to that of the multiplicative extended Kalman filter, and it can effectively improve the real-time performance of parameter estimation, save time, and improved navigation efficiency.

Key words: strapdown inertial navigation system (SINS), semi-global uniform exponential stability, nonlinear observer (NOB), global navigation satellite system (GNSS) aided navigation, multiplicative extended Kalman filter

中图分类号: