系统仿真学报 ›› 2019, Vol. 31 ›› Issue (4): 687-695.doi: 10.16182/j.issn1004731x.joss.17-0124

• 仿真应用工程 • 上一篇    下一篇

流场环境对微结构表面防微生物附着的影响

李春曦, 薛全喜, 张湘珊, 叶学民   

  1. 电站设备状态监测与控制教育部重点实验室(华北电力大学),河北 保定 071003
  • 收稿日期:2017-03-16 修回日期:2017-06-27 出版日期:2019-04-08 发布日期:2019-11-20
  • 作者简介:李春曦(1973-),女,唐山,博士,教授,研究方向为流体力学及流体工程; 薛全喜(1990-),男,临沂,硕士生,研究方向为流动减阻。
  • 基金资助:
    国家自然科学基金(11202079), 河北省自然科学基金(A2015502058)

Effect of Flow Field Environment on Microstructure Surface Preventing Microorganism Attachment

Li Chunxi, Xue Quanxi, Zhang Xiangshan, Ye Xuemin   

  1. Key Lab of Condition Monitoring and Control for Power Plant Equipment of Education Ministry (North China Electric Power University), Baoding 071003, China
  • Received:2017-03-16 Revised:2017-06-27 Online:2019-04-08 Published:2019-11-20

摘要: 通过模拟微生物模型在不同表面和流场中的运动学特征,分析了微生物周围的内流特征和防止微生物粘附的内在机理。研究表明:静态流场中,由于微坑内形成旋涡,微结构表面上的流速大于光滑表面,微生物所受变形速率及剪切应力较小,微生物可快速通过微结构表面;动态流场中,近壁区流场呈规律性波动,微生物受到较大变形速率及剪切应力的影响,需更多的动力支持其减缓自身速度以寻找合适的附着点,加大了其附着难度;逆向流场比同向流场具有更好的防污效果。

关键词: 微结构, 微生物污损, 流场, 旋涡

Abstract: The kinetic characteristics of microorganism model moving in different surfaces and flow field environments are simulated. The internal flow dynamics and the inherent mechanism of antifouling on microstructure surface are examined. The results indicate that for the static flow field, vortices are generated in the micro-pits as microorganism moves above microstructure surface. The velocity in the microstructure surface is greater than that in the smooth surface, and the strain rate and shear stress exerted on microorganism are relatively smaller resulting in the rapid passing the microstructure surface. For the dynamic flow field, the flow field presents regular fluctuations in the near-wall region. Microorganisms are affected by larger strain rate and shear stress, thus more energy is needed to support microorganisms to slow down its speed to seek suitable attachment points resulting in increasingly difficult attachment. The reverse flow field has a better antifouling effect than the co-directional flow field.

Key words: microstructure, biofouling, flow field, vortex

中图分类号: