系统仿真学报 ›› 2025, Vol. 37 ›› Issue (7): 1836-1847.doi: 10.16182/j.issn1004731x.joss.25-0095

• 特约论文 • 上一篇    

基于自适应大邻域搜索的多场景多卫星任务规划方法

李庥甜1, 王凌2, 陈英武1, 邢立宁3, 陈盈果1   

  1. 1.国防科技大学 系统工程学院,湖南 长沙 410073
    2.清华大学 自动化系,北京 100084
    3.江苏理工学院 智能控制与制造系统研究院,江苏 常州 213001
  • 收稿日期:2025-02-10 修回日期:2025-04-13 出版日期:2025-07-18 发布日期:2025-07-30
  • 通讯作者: 邢立宁
  • 第一作者简介:李庥甜(1999-),女,硕士生,研究方向为人工智能。
  • 基金资助:
    国家自然科学基金(U23B2039)

Multi-scenario Multi-satellite Mission Planning Method Based on Adaptive Large Neighborhood Search

Li Xiutian1, Wang Ling2, Chen Yingwu1, Xing Lining3, Chen Yingguo1   

  1. 1.College of Systems Engineering, National University of Defense Technology, Changsha 410073, China
    2.Department of Automation, Tsinghua University, Beijing 100084, China
    3.Research Institute of Intelligent Control and Manufacturing System, Jiangsu University of Technology, Changzhou 213001, China
  • Received:2025-02-10 Revised:2025-04-13 Online:2025-07-18 Published:2025-07-30
  • Contact: Xing Lining

摘要:

为进一步提高遥感卫星的任务执行效率,针对多场景多卫星任务规划问题的约束复杂性、规模动态性及资源异构性挑战,提出了一种融合自适应大邻域搜索与约束规划-布尔可满足性问题(constraint programming-boolean satisfiability problem,CP-SAT)求解监视器的集成优化框架。建立了统一的多目标混合整数规划模型,耦合点目标与区域任务的异构约束;设计了时域滚动机制动态分解问题规模,并基于优先级筛选策略提升自适应大邻域搜索的搜索效率;通过CP-SAT监视器实时验证解可行性。结果表明:相比于遗传算法、粒子群优化及深度Q网络,所提方法在300个测试场景中任务完成率提升15%~28%,运行耗时降低30%~50%,且负载均衡度优化20%以上。

关键词: 卫星任务筹划, 多类型场景, 自适应大邻域搜索, 混合整数规划, 动态优先级筛选

Abstract:

To further improve the execution efficiency of remote sensing satellites, an integrated optimization framework combining adaptive large neighborhood search (ALNS) and a constraint programming-boolean satisfiability problem (CP-SAT) solver monitor was proposed, addressing the challenges of complex constraints, dynamic scale, and resource heterogeneity in multi-scenario multi-satellite mission planning. A unified multi-objective mixed-integer programming model was established, coupling heterogeneous constraints of point targets and area tasks. A time-domain rolling mechanism dynamically decomposed the problem scale, and a priority screening strategy enhanced the search efficiency of ALNS. Solution feasibility was verified in real time through the CP-SAT monitor. Results show that compared with genetic algorithm, particle swarm optimization, and deep Q-network, the proposed method achieves a 15%~28% improvement in task completion rate, 30%~50% reduction in computation time, and over 20% optimization in load balancing in 300 test scenarios.

Key words: satellite mission planning, multi-scenario, adaptive large neighborhood search, mixed-integer programming, dynamic priority screening

中图分类号: