系统仿真学报 ›› 2023, Vol. 35 ›› Issue (10): 2077-2086.doi: 10.16182/j.issn1004731x.joss.23-FZ0802E

• 论文 •    下一篇

用户自定义语义的地形表面纹理生成网络

高岩1, 李吉梦2, 许建中3, 全红艳1()   

  1. 1.华东师范大学 计算机科学与技术学院, 上海 200062
    2.华东师范大学 软件工程学院, 上海 200062
    3.陆军步兵学院 演训中心, 江西 南昌 330103
  • 收稿日期:2023-07-02 修回日期:2023-08-21 出版日期:2023-10-30 发布日期:2023-10-26
  • 通讯作者: 全红艳 E-mail:hyquan@cs.ecnu.edu.cn

Terrain Surface Texture Generation Networks for User Semantics Customization

Gao Yan1, Li Jimeng2, Xu Jianzhong3, Quan Hongyan1()   

  1. 1.School of Computer Science and Technology, East China Normal University, Shanghai 200062, China
    2.School of Software Engineering, East China Normal University, Shanghai 200062, China
    3.Training and Simulation Center, Army Infantry Academy, Nanchang 330103, China
  • Received:2023-07-02 Revised:2023-08-21 Online:2023-10-30 Published:2023-10-26
  • Contact: Quan Hongyan E-mail:hyquan@cs.ecnu.edu.cn
  • About author:Gao Yan (1973-), male, associate professor, doctor, research areas: computer graphics, computer simulation, and virtual reality.
  • Supported by:
    The national natural science foundation of China(62002121);Digital Silk Road International Joint Laboratory Fund(22510750100)

摘要:

基于用户语义的地形定制在军事仿真应用的虚拟地形建模中具有实用价值。研究中提供一种基于用户输入语义合成真实地形的TSTG-Net网络(terrain surface texture generation networks)。该网络被设计为基于Pix2pix结构,并基于条件生成对抗网络CGAN设计,通过编码和解析用户语义来学习定制地形的拓扑结构,并将其作为约束CGAN的语义特征。在生成器-鉴别器结构中,用户自定义的语义作为输入,并使用语义真实地形作为网络优化约束的真值。为了获得具有细节的地形信息,研究了一种基于小波变换的地形生成策略,充分利用小波变换分析方法来解决地形合成问题。TSTG Net被设计为双重编码,第一个编码-解码过程采用普通的4层编码和4层解码结构,第二个编码过程基于离散小波变换来提取更精确的纹理表面特征,不同于现有技术,双重编码结构可以生成尽可能逼真的地形纹理图,通过约束条件可以生成更精细的地形纹理。它提取了多个通道的冗余特征,可以获得复杂度较低的轻量模型。通过在公开真实的地形数据以及合成地形数据进行实验,均证明所研究算法能够实现用户地形的定制,并能以较好的时间性能生成逼真的结果。

关键词: 地形定制, CGAN网络, Pix2pix结构, 小波变换

Abstract:

Customizing terrain based on user semantics has practical value in the virtual terrain modeling of military simulation applications. This study provides a terrain surface texture generation network (TSTG-Net) that can synthesize realistic terrain based on user input semantics. TSTG-Net is designed as a Pix2pix structure and is based on CGAN. It learns the topology of customized terrain by encoding and parsing user semantics and regards the semantics feature as the constraint of CGAN. In the generator-discriminator structure, user-customized semantics are used as the input, and the real terrain with semantics is employed as the ground truth in network optimization. In order to obtain more detailed terrain information, the terrain generation strategy based on wavelet transform is studied, which takes full use of the wavelet transformation analysis method to solve the problem of terrain synthesis. TSTG-Net is designed as double encoding. The first encoding-decoding process takes ordinary 4-layer encoding and 4-layer decoding structures, and the second encoding process is designed based on DWT to extract more precise features of the texture surface. Different from the state of the art, our double encoding structure can generate the terrain texture map as realistically as possible, and then finer terrain textures can be generated through the constraints conditions. In addition, it extracts the redundant features of multiple channels, and a lightweight model with lower complexity can be obtained. Experiments carried out on the public real terrain data and the synthesized terrain data both verify that the proposed algorithm can achieve user terrain customization and generate realistic results in better time performance.

Key words: terrain customization, CGAN, Pix2pix structure, wavelet transform

中图分类号: