系统仿真学报 ›› 2023, Vol. 35 ›› Issue (6): 1308-1321.doi: 10.16182/j.issn1004731x.joss.22-0216

• 论文 • 上一篇    下一篇

基于改进MobileNet网络的AR辅助手语字母识别方法

刘春宏1(), 王松1(), 王赋攀1, 唐文生1, 裴云强1, 田东生1, 吴亚东2   

  1. 1.西南科技大学 计算机科学与技术学院,四川 绵阳 621010
    2.四川轻化工大学 计算机科学与工程学院,四川 自贡 643002
  • 收稿日期:2022-03-15 修回日期:2022-05-25 出版日期:2023-06-29 发布日期:2023-06-20
  • 通讯作者: 王松 E-mail:2501649391@qq.com;wangsong@swust.edu.cn
  • 作者简介:刘春宏(1995-),女,硕士生,研究方向为移动增强现实、深度学习、人机交互。E-mail:2501649391@qq.com
  • 基金资助:
    国家自然科学基金面上项目(61872304);四川省自然科学基金(2022NSFSC0961);西南科技大学博士基金(19zx7144);西南科技大学素质类教改(青年发展研究)专项(20szjg17)

AR-assisted Sign Language Letter Recognition Method Based on Improved MobileNet Network

Chunhong Liu1(), Song Wang1(), Fupan Wang1, Wensheng Tang1, Yunqiang Pei1, Dongsheng Tian1, Yadong Wu2   

  1. 1.School of Computer Science & Technology, Southwest University of Science and Technology, Mianyang 621010, China
    2.School of Computer Science & Engineering, Sichuan University of Science and Engineering, Zigong 643002, China
  • Received:2022-03-15 Revised:2022-05-25 Online:2023-06-29 Published:2023-06-20
  • Contact: Song Wang E-mail:2501649391@qq.com;wangsong@swust.edu.cn

摘要:

针对手语手势姿态待规范、识别率低的问题,提出一种AR辅助手语字母识别算法MS-MobileNet。设计多尺度卷积模块提取底层特征,增强网络的特征提取能力;利用ELU激活函数来保留更全面的负值特征信息;结合适用于Web的轻量级MobileNet模型,提高面向移动AR应用的手语字母识别准确率和实时性。实验结果表明:MS-MobileNet在数据集ASL-M、NUS-II和Creative Senz3D上识别准确率较原模型分别提高了2.58%、5.32%和3.04%。基于MS-MobileNet网络设计一套WebAR辅助的手语字母协同交互系统,经评估测试,用户平均参与度达到8.2分,单次识别耗时低于0.115 s 能较好地满足用户沉浸式的实时手语字母交互需求。

关键词: 手语字母识别, MobileNet, 多尺度卷积, WebAR, 协同交互

Abstract:

An AR-assisted sign language letter recognition algorithm MS-MobileNet is proposed for the problems of sign language gestures needing to be standardized and low recognition rate. A multi-scale convolution module is designed to extract the low-level features and enhance the feature extraction ability. ELU activation function is used to retain the negative feature information, which combined with a lightweight MobileNet model for the web to improve the recognition accuracy and real-time performance for mobile AR applications. Test results show that compared with the original model, the recognition accuracy of MS-MobileNet on the datasets ASL-M, NUS-II and Creative Senz3D is improved by 2.58%, 5.32% and 3.04%, respectively. Based on improved network, a WebAR-assisted sign language collaborative interaction system is designed. After the evaluation test, the average user participation rate reached 8.2 points, and the single recognition time is less than 0.115 s. User's needs for immersive real-time sign language letter interaction is better met.

Key words: sign language letter recognition, MobileNet, multi-scale convolution, WebAR, collaborative interaction

中图分类号: