系统仿真学报 ›› 2023, Vol. 35 ›› Issue (6): 1169-1182.doi: 10.16182/j.issn1004731x.joss.22-0146

• 论文 • 上一篇    下一篇

基于关键点精确配对的点云曲面匹配方法

宁小娟1,2(), 李春旭1(), 王嘉豪1, 唐婧1, 王映辉3, 金海燕1,2   

  1. 1.西安理工大学 计算机科学与工程学院,陕西 西安 710048
    2.陕西省网络计算与安全技术重点实验室,陕西 西安 710048
    3.江南大学 人工智能与计算机学院,江苏 无锡 214122
  • 收稿日期:2022-02-08 修回日期:2022-04-13 出版日期:2023-06-29 发布日期:2023-06-20
  • 通讯作者: 李春旭 E-mail:ningxiaojuan@xaut.edu.cn;876167524@qq.com
  • 作者简介:宁小娟(1982-),女,教授,博士,研究方向为模式识别与图像处理。Email:ningxiaojuan@xaut.edu.cn
  • 基金资助:
    国家自然科学基金(61871320);西安市碑林区科技计划(GX2107)

Point Cloud Surface Matching Method Based on Precise Matching of Critical Point

Xiaojuan Ning1,2(), Chunxu Li1(), Jiahao Wang1, Jing Tang1, Yinghui Wang3, Haiyan Jin1,2   

  1. 1.School of Computer Science and Engineering, Xi'an University of Technology, Xi'an 710048, China
    2.Shaanxi Provincial Key Laboratory of Network Computing and Security Technology, Xi'an 710048, China
    3.School of Artificial Intelligence and Computer, Jiangnan University, Wuxi 214122, China
  • Received:2022-02-08 Revised:2022-04-13 Online:2023-06-29 Published:2023-06-20
  • Contact: Chunxu Li E-mail:ningxiaojuan@xaut.edu.cn;876167524@qq.com

摘要:

针对基于特征的点云曲面匹配方法在关键点匹配时匹配效率低和精度不够的问题,提出了一种基于关键点精确配对的点云曲面匹配方法。通过采用基于曲率信息的改进3D-SIFT(3D scale-invariant feature transform)算法,提取点云数据的关键点;将关键点处的FPFH(fast point feature histograms)特征描述以及模型中心点到关键点的向量与模型主趋势的夹角作为约束条件,获取精确的关键点匹配点对集合;求解刚体变换参数实现模型曲面的初始匹配;使用ICP(iterative closest point)算法进行二次优化,实现模型曲面的精确匹配。实验表明:该方法既能解决关键点匹配精度问题,又能很好地解决匹配效率的问题。

关键词: 尺度不变特征变换, 快速点特征直方图, 主趋势, 刚体变换参数, 迭代最近点

Abstract:

To solve the low matching efficiency and insufficient accuracy of feature-based point cloud surface matching method during critical point matching, a point cloud surface matching method based on the pairing exaction of critical points is proposed. An improved 3D scale-invariant feature transform(3D-SIFT) algorithm based on curvature information is presented to extract the critical points. Fast point feature histograms(FPFH) feature, the angle between the vector from the center to critical points and the principal direction of the model are taken as the constraints to obtain the exact critical point matching point pair set. The initial matching of the model surface is implemented by the rigid body transformation parameters, and further the accurate matching of the model surface is achieved by iterative closest point(ICP). Experiments show that the approach can not only improve the critical point matching accuracy, but also enhance the matching efficiency. Compared with other methods, the method is slightly better on the matching speed.

Key words: scale-invariant feature transformation, fast point feature histogram, principal direction, rigid body transformation parameters, iterative closest point

中图分类号: